Cerebral blood flow during hemodilution and hypoxia in rats : role of ATP-sensitive potassium channels.

نویسندگان

  • Y Tomiyama
  • J E Brian
  • M M Todd
چکیده

BACKGROUND AND PURPOSE Hypoxia and hemodilution both reduce arterial oxygen content (CaO(2)) and increase cerebral blood flow (CBF), but the mechanisms by which hemodilution increases CBF are largely unknown. ATP-sensitive potassium (K(ATP)) channels are activated by intravascular hypoxia, and contribute to hypoxia-mediated cerebrovasodilatation. Although CaO(2) can be reduced to equal levels by hypoxia or hemodilution, intravascular PO(2) is reduced only during hypoxia. We therefore tested the hypothesis that K(ATP) channels would be unlikely to contribute to cerebrovasodilatation during hemodilution. METHODS Glibenclamide (19.8 microg) or vehicle was injected into the cisterna magna of barbiturate-anesthetized rats. The dose of glibenclamide was chosen to yield an estimated CSF concentration of 10(-4) M. Thirty minutes later, some animals underwent either progressive isovolumic hemodilution or hypoxia (over 30 minutes) to achieve a CaO(2) of approximately 7.5 mL O(2)/dL. Other animals did not undergo hypoxia or hemodilution and served as controls. Six groups of animals were studied: control/vehicle (n=4), control/glibenclamide (n=4), hemodilution/vehicle (n=10), hemodilution/glibenclamide (n=10), hypoxia/vehicle (n=10), and hypoxia/glibenclamide (n=10). CBF was then measured with (3)H-nicotine in the forebrain, cerebellum, and brain stem. RESULTS In control/vehicle rats, CBF ranged from 72 mL. 100 g(-1). min(-1) in forebrain to 88 mL. 100 g(-1) x min(-1) in the brain stem. Glibenclamide treatment of control animals did not influence CBF in any brain area. Hemodilution increased CBF in all brain areas, with flows ranging from 128 mL. 100 g(-1) x min(-1) in forebrain to 169 mL. 100 g(-1) x min(-1) in the brain stem. Glibenclamide treatment of hemodiluted animals did not affect CBF in any brain area. Hypoxia resulted in a greater CBF than did hemodilution, ranging from 172 mL. 100 g(-1) x min(-1) in forebrain to 259 mL. 100 g(-1) x min(-1) in the brain stem. Glibenclamide treatment of hypoxic animals significantly reduced CBF in all brain areas (P<0.05). CONCLUSIONS Both hypoxia and hemodilution increased CBF. Glibenclamide treatment significantly attenuated the CBF increase during hypoxia but not after hemodilution. This finding supports our hypothesis that K(ATP) channels do not contribute to increasing CBF during hemodilution. Because intravascular PO(2) is normal during hemodilution, this finding supports the hypothesis that intravascular PO(2) is an important regulator of cerebral vascular tone and exerts its effect in part by activation of K(ATP) channels in the cerebral circulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Nitric Oxide and ATP-Sensitive K+ Channels in Regulation of Basal Blood Flow and Hypercapnic Vasodilatation of Cerebral Blood Vessels in Rabbit

Background: The mechanisms underlying cerebral hypercapnic vasodilatation are not fully understood. Objective: To investigate the role of nitric oxide (NO) and ATP-sensitive potassium (KATP) channels in basal blood flow regulation and hypercapnia-induced vasodilatation in rabbit cerebral blood vessels. Methods: The change in cerebral blood flow was measured by a laser Doppler flowmeter in 18 Ne...

متن کامل

Anti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels

Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...

متن کامل

Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release.

Neurons express a variety of plasma-membrane potassium channels that play important roles in regulating neuronal excitability and synaptic transmission, but also contain mitochondrial ATP-sensitive potassium channels, the functions of which are unknown. Studies of cardiac cells suggest that similar mitochondrial ATP-sensitive potassium channels are involved in the process of ischemic preconditi...

متن کامل

Anti-nociceptive effect of cimetidine in mice: the role of ATP-sensitive potassium channels

Recent studies have shown that intracerebroventricular administration of cimetidine (CIM) induces anti-nociceptive and anti–inflammatory effects in rats. However, the underlying mechanism of CIM effect has not been determined yet. This study was planned to determine the anti-nociceptive effect of CIM (50 mg/kg, i.p.) in male mice (25-30 g, n = 80) using tail flick test. Also, the role of ATP-se...

متن کامل

Effect of ATP-Dependent K+ Channel Openers and Blockers on Serum Concentration of Aldosterone in Rats

There are many reports for involvement of ATP-sensitive potassium channels in pancreatic, cardiac and vascular smooth muscle cells. This study examined the effect of single doses of K+ channel openers diazoxide, minoxidil and K+ channel blockers chlorpropamide, glibenclamide on serum concentration of aldosterone in male rats. Blood samples were obtained 60 minutes after drug treatment and serum...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Stroke

دوره 30 9  شماره 

صفحات  -

تاریخ انتشار 1999